34 research outputs found

    Biogenic isoprene emissions, dry deposition velocity, and surface ozone concentration during summer droughts, heatwaves, and normal conditions in southwestern Europe

    Get PDF
    At high concentrations, tropospheric ozone (O3) deteriorates air quality, inducing adverse effects on human and ecosystem health. Meteorological conditions are key to understanding the variability in O3 concentration, especially during extreme weather events. In addition to modifying photochemistry and atmospheric transport, droughts and heatwaves affect the state of vegetation and thus the biosphere–troposphere interactions that control atmospheric chemistry, namely biogenic emissions of precursors and gas dry deposition. A major source of uncertainty and inaccuracy in the simulation of surface O3 during droughts and heatwaves is the poor representation of such interactions. This publication aims at quantifying the isolated and combined impacts of both extremes on biogenic isoprene (C5H8) emissions, O3 dry deposition, and surface O3 in southwestern Europe. First, the sensitivity of biogenic C5H8 emissions, O3 dry deposition, and surface O3 to two specific effects of droughts, the decrease in soil moisture and in biomass, is analysed for the extremely dry summer 2012 using the biogenic emission model MEGANv2.1 and the chemistry transport model CHIMEREv2020r1. Despite a significant decrease in biogenic C5H8 emissions and O3 dry deposition velocity, characterized by a large spatial variability, the combined effect on surface O3 concentration remains limited (between +0.5 % and +3 % over the continent). The variations in simulated biogenic C5H8 emissions, O3 dry deposition, and surface O3 during the heatwaves and agricultural droughts are then analysed for summer 2012 (warm and dry), 2013 (warm), and 2014 (relatively wet and cool). We compare the results with large observational data sets, namely O3 concentrations from Air Quality (AQ) e-Reporting (2000–2016) and total columns of formaldehyde (HCHO, which is used as a proxy for biogenic emissions of volatile organic compounds) from the Ozone Monitoring Instrument (OMI) of the Aura satellite (2005–2016). Based on a cluster approach using the percentile limit anomalies indicator, we find that C5H8 emissions increase by +33 % during heatwaves compared to normal conditions, do not vary significantly during all droughts (either accompanied or not by a heatwave), and decrease by −16 % during isolated droughts. OMI data confirm an average increase in HCHO during heatwaves (between +15 % and +31 % depending on the product used) and decrease in HCHO (between −2 % and −6 %) during isolated droughts over the 2005–2016 summers. Simulated O3 dry deposition velocity decreases by −25 % during heatwaves and −35 % during all droughts. Simulated O3 concentrations increase by +7 % during heatwaves and by +3 % during all droughts. Compared to observations, CHIMERE tends to underestimate the daily maximum O3. However, similar sensitivity to droughts and heatwaves are obtained. The analysis of the AQ e-Reporting data set shows an average increase of +14 % during heatwaves and +7 % during all droughts over the 2000–2016 summers (for an average daily concentration value of 69 µg m−3 under normal conditions). This suggests that identifying the presence of combined heatwaves is fundamental to the study of droughts on surface–atmosphere interactions and O3 concentration.</p

    On the formation of biogenic secondary organic aerosol in chemical transport models: an evaluation of the WRF-CHIMERE (v2020r2) model with a focus over the Finnish boreal forest

    Get PDF
    We present an evaluation of the regional chemical transport model (CTM) WRF-CHIMERE (v2020r2) for the formation of biogenic secondary organic aerosol (BSOA) with a focus over the Finnish boreal forest. Formation processes of biogenic aerosols are still affected by different sources of uncertainties, and model predictions vary greatly depending on the levels of details of the adopted chemical and emissions schemes. In this study, air quality simulations were conducted for the summer of 2019 using different organic aerosol (OA) schemes (as currently available in the literature) to treat the formation of BSOA. First, we performed a set of simulations in the framework of the volatility basis set (VBS) scheme carrying different assumptions for the treatment of the aging processes of BSOA. The results of the model were compared against high-resolution (i.e., 1 h) organic aerosol mass and size distribution measurements performed at the Station for Measuring Ecosystem–Atmosphere Relations (SMEAR-II) site located in Hyytiälä, in addition to other gas-phase species such as ozone (O3), nitrogen oxides (NOx), and biogenic volatile organic compound (BVOC) measurements of isoprene (C5H10) and monoterpenes. We show that WRF-CHIMERE could reproduce well the diurnal variation of the measured OA concentrations for all the investigated scenarios (along with the standard meteorological parameters) as well as the increase in concentrations during specific heat wave episodes. However, the modeled OA concentrations varied greatly between the schemes used to describe the aging processes of BSOA, as also confirmed by an additional evaluation using organic carbon (OC) measurement data retrieved from the EBAS European databases. Comparisons with isoprene and monoterpene air concentrations revealed that the model captured the observed monoterpene concentrations, but isoprene was largely overestimated, a feature that was mainly attributed to the overstated biogenic emissions of isoprene. We investigated the potential consequences of such an overestimation by inhibiting isoprene emissions from the modeling system. Results indicated that the modeled BSOA concentrations increased in the northern regions of the domain (e.g., Finland) compared to southern European countries, possibly due to a shift in the reactions of monoterpene compounds against available radicals, as further suggested by the reduction in α-pinene modeled air concentrations. Finally, we briefly analyze the differences in the modeled cloud liquid water content (clwc) among the simulations carrying different chemical schemes for the treatment of the aging processes of BSOA. The results of the model indicated an increase in clwc values at the SMEAR-II site, for simulations with higher biogenic organic aerosol loads, most likely as a result of the increased number of biogenic aerosol particles capable of activating cloud droplets.</p

    Jet Substructure at the Tevatron and LHC: New results, new tools, new benchmarks

    Get PDF
    In this report we review recent theoretical progress and the latest experimental results in jet substructure from the Tevatron and the LHC. We review the status of and outlook for calculation and simulation tools for studying jet substructure. Following up on the report of the Boost 2010 workshop, we present a new set of benchmark comparisons of substructure techniques, focusing on the set of variables and grooming methods that are collectively known as "top taggers". To facilitate further exploration, we have attempted to collect, harmonise, and publish software implementations of these techniques.Comment: 53 pages, 17 figures. L. Asquith, S. Rappoccio, C. K. Vermilion, editors; v2: minor edits from journal revision

    HE-LHC: The High-Energy Large Hadron Collider – Future Circular Collider Conceptual Design Report Volume 4

    Get PDF
    In response to the 2013 Update of the European Strategy for Particle Physics (EPPSU), the Future Circular Collider (FCC) study was launched as a world-wide international collaboration hosted by CERN. The FCC study covered an energy-frontier hadron collider (FCC-hh), a highest-luminosity high-energy lepton collider (FCC-ee), the corresponding 100 km tunnel infrastructure, as well as the physics opportunities of these two colliders, and a high-energy LHC, based on FCC-hh technology. This document constitutes the third volume of the FCC Conceptual Design Report, devoted to the hadron collider FCC-hh. It summarizes the FCC-hh physics discovery opportunities, presents the FCC-hh accelerator design, performance reach, and staged operation plan, discusses the underlying technologies, the civil engineering and technical infrastructure, and also sketches a possible implementation. Combining ingredients from the Large Hadron Collider (LHC), the high-luminosity LHC upgrade and adding novel technologies and approaches, the FCC-hh design aims at significantly extending the energy frontier to 100 TeV. Its unprecedented centre-of-mass collision energy will make the FCC-hh a unique instrument to explore physics beyond the Standard Model, offering great direct sensitivity to new physics and discoveries

    FCC-ee: The Lepton Collider – Future Circular Collider Conceptual Design Report Volume 2

    Get PDF

    FCC-ee: The Lepton Collider: Future Circular Collider Conceptual Design Report Volume 2

    Get PDF
    In response to the 2013 Update of the European Strategy for Particle Physics, the Future Circular Collider (FCC) study was launched, as an international collaboration hosted by CERN. This study covers a highest-luminosity high-energy lepton collider (FCC-ee) and an energy-frontier hadron collider (FCC-hh), which could, successively, be installed in the same 100 km tunnel. The scientific capabilities of the integrated FCC programme would serve the worldwide community throughout the 21st century. The FCC study also investigates an LHC energy upgrade, using FCC-hh technology. This document constitutes the second volume of the FCC Conceptual Design Report, devoted to the electron-positron collider FCC-ee. After summarizing the physics discovery opportunities, it presents the accelerator design, performance reach, a staged operation scenario, the underlying technologies, civil engineering, technical infrastructure, and an implementation plan. FCC-ee can be built with today’s technology. Most of the FCC-ee infrastructure could be reused for FCC-hh. Combining concepts from past and present lepton colliders and adding a few novel elements, the FCC-ee design promises outstandingly high luminosity. This will make the FCC-ee a unique precision instrument to study the heaviest known particles (Z, W and H bosons and the top quark), offering great direct and indirect sensitivity to new physics

    FCC Physics Opportunities: Future Circular Collider Conceptual Design Report Volume 1

    Get PDF
    We review the physics opportunities of the Future Circular Collider, covering its e+e-, pp, ep and heavy ion programmes. We describe the measurement capabilities of each FCC component, addressing the study of electroweak, Higgs and strong interactions, the top quark and flavour, as well as phenomena beyond the Standard Model. We highlight the synergy and complementarity of the different colliders, which will contribute to a uniquely coherent and ambitious research programme, providing an unmatchable combination of precision and sensitivity to new physics

    HE-LHC: The High-Energy Large Hadron Collider: Future Circular Collider Conceptual Design Report Volume 4

    Get PDF
    In response to the 2013 Update of the European Strategy for Particle Physics (EPPSU), the Future Circular Collider (FCC) study was launched as a world-wide international collaboration hosted by CERN. The FCC study covered an energy-frontier hadron collider (FCC-hh), a highest-luminosity high-energy lepton collider (FCC-ee), the corresponding 100 km tunnel infrastructure, as well as the physics opportunities of these two colliders, and a high-energy LHC, based on FCC-hh technology. This document constitutes the third volume of the FCC Conceptual Design Report, devoted to the hadron collider FCC-hh. It summarizes the FCC-hh physics discovery opportunities, presents the FCC-hh accelerator design, performance reach, and staged operation plan, discusses the underlying technologies, the civil engineering and technical infrastructure, and also sketches a possible implementation. Combining ingredients from the Large Hadron Collider (LHC), the high-luminosity LHC upgrade and adding novel technologies and approaches, the FCC-hh design aims at significantly extending the energy frontier to 100 TeV. Its unprecedented centre-of-mass collision energy will make the FCC-hh a unique instrument to explore physics beyond the Standard Model, offering great direct sensitivity to new physics and discoveries

    FCC-hh: The Hadron Collider: Future Circular Collider Conceptual Design Report Volume 3

    Get PDF
    In response to the 2013 Update of the European Strategy for Particle Physics (EPPSU), the Future Circular Collider (FCC) study was launched as a world-wide international collaboration hosted by CERN. The FCC study covered an energy-frontier hadron collider (FCC-hh), a highest-luminosity high-energy lepton collider (FCC-ee), the corresponding 100&nbsp;km tunnel infrastructure, as well as the physics opportunities of these two colliders, and a high-energy LHC, based on FCC-hh technology. This document constitutes the third volume of the FCC Conceptual Design Report, devoted to the hadron collider FCC-hh. It summarizes the FCC-hh physics discovery opportunities, presents the FCC-hh accelerator design, performance reach, and staged operation plan, discusses the underlying technologies, the civil engineering and technical infrastructure, and also sketches a possible implementation. Combining ingredients from the Large Hadron Collider (LHC), the high-luminosity LHC upgrade and adding novel technologies and approaches, the FCC-hh design aims at significantly extending the energy frontier to 100&nbsp;TeV. Its unprecedented centre of-mass collision energy will make the FCC-hh a unique instrument to explore physics beyond the Standard Model, offering great direct sensitivity to new physics and discoveries

    HE-LHC: The High-Energy Large Hadron Collider

    Get PDF
    In response to the 2013 Update of the European Strategy for Particle Physics (EPPSU), the Future Circular Collider (FCC) study was launched as a world-wide international collaboration hosted by CERN. The FCC study covered an energy-frontier hadron collider (FCC-hh), a highest-luminosity high-energy lepton collider (FCC-ee), the corresponding 100 km tunnel infrastructure, as well as the physics opportunities of these two colliders, and a high-energy LHC, based on FCC-hh technology. This document constitutes the third volume of the FCC Conceptual Design Report, devoted to the hadron collider FCC-hh. It summarizes the FCC-hh physics discovery opportunities, presents the FCC-hh accelerator design, performance reach, and staged operation plan, discusses the underlying technologies, the civil engineering and technical infrastructure, and also sketches a possible implementation. Combining ingredients from the Large Hadron Collider (LHC), the high-luminosity LHC upgrade and adding novel technologies and approaches, the FCC-hh design aims at significantly extending the energy frontier to 100 TeV. Its unprecedented centre-of-mass collision energy will make the FCC-hh a unique instrument to explore physics beyond the Standard Model, offering great direct sensitivity to new physics and discoveries
    corecore